

Macros - Basic

Prepared by

International SAS® Training and Consulting

Destiny Corporation
100 Great Meadow Rd Suite 601

Wethersfield, CT 06109-2379
Phone: (860) 721-1684 1-800-7TRAINING Fax: (860)

721-9784
Email: info@destinycorp.com
Web: www.destinycorp.com

Copyright 2003

Introduction to Macros in SAS

Why learn macros? In brief, they provide the only solution to certain
programming goals. Further, they greatly reduce the amount of
work required to achieve some goals. These facts will become clear
as the curriculum continues.

Macros are used to:

• Change code easily, making code more flexible.
• Conditionally generate and execute code.
• Generate repetitive code.
• Pass variable information across Step boundaries.

A macro is stored text that can be referenced (or “called”) using
another, shorter name. In effect the macro environment allows the
programmer to take one set of text and convert it to another text
string according to well defined rules.

The macro environment allows a programmer to write customized
syntax, which can be reused whole or modified with different
parameters to produce varied output. Macros allow the programmer
to set different values for data sets, variables, statistics, etc. each
time the syntax runs. Rather than sift through hundreds of lines of
code to find and change select references, the macro is coded with
parameters, which need to be changed once each time the syntax
runs.

As one example of where macros might be used consider the
situation where you wish to include a summary statistic, such as
average salary, in a title statement. The average salary could be
stored in a data set, but how would the title pick up the value?
Alternatively, the programmer could ‘hard code’ the value into the
title. But what happens if the data set values for salary change? The
programmer would have to be involved interactively every time the
program runs. Hardly satisfactory!

In contrast, the value of average salary could be saved as a macro
variable. The title statement can then reference the macro variable
which would resolve to the value of average salary.

Macro Variables

In this module, we discuss two special characters:

• ampersand (&)
• percent (%).

Both characters have special functionality within the macro
environment.

Naming conventions are to be followed for macro names, macro
bundle names, and parameter names. Although these terms are
still undefined, bear in mind the following when assigning names:

• Any valid SAS name according to the Operating System
and SAS version is generally acceptable

• SAS has reserved some names for other use. Do not use

the following words when programming in macros:

ABEND ABORT ACT ACTIVATE BQUOTE
BY CLEAR CLOSE CMS COMANDR
COPY DEACT DEL DELETE DISPLAY
DMIDSPLY DMISPLIT DO EDIT ELSE
END EVAL FILE GLOBAL GO
GOTO IF INC INCLUDE INDEX
INFILE INPUT KEYDEF LENGTH LET
LIST LISTM LOCAL MACRO MEND
METASYM NRBQUOTE NRQUOTE NRSTR ON
OPEN PAUSE PUT QSCAN QSUBSTR
QUOTE QUPCASE RESOLVE RETURN RUN
SAVE SCAN STOP STR SUBSTR
SUPERQ SYSEXEC SYSGET SYSRPUT THEN
TO TSO UNQUOTE UNSTR UNTIL
UPCASE WHILE WINDOW

An attempt to call a macro by a reserved name will result in a
warning message. The macro will be neither compiled nor available
for use.

%Let Statements

A %let statement is one method used to create a macro variable.
Within a %let statement the name of the macro variable is to the left
of the equal sign. Everything to the right of the equal sign up to but
not including the semi-colon, except leading and trailing blanks, is
the value of the macro variable. We will discuss the %let statement
in greater detail in a subsequent chapter.

We wish to consider the following example to demonstrate use of
the ampersand and percent symbols.

Line Comment
00001

Define a macro variable called ds with its value.
The presence of a % followed by a non-blank
character triggers the macro facility. A %let tells
the macro facility that a macro variable is to be
defined. The %let statement can appear
anywhere within a SAS program to define one
macro variable at a time.

00003
00009 Use &ds (ampersand+macro variable name) to

invoke the value.

When the SAS Supervisor sees an ampersand followed by a
non-blank character, the macro facility is activated. In turn, the

macro facility determines the value for the macro variable and
passes the value back on to the input stack.

A partial listing of the output is displayed below.

The code executes as if the programmer had submitted the
following:

What is the advantage of using the macro %let statement over
direct coding? Consider how easily changes can be made should a
new data set be used. It would also be easy to use a different By
variable in the By statement.

The following program shows easy code changes with macros.

Line Comment
00001
00002

The %let statements now refer to an entirely
different data set and By variable.

A partial listing of the new output is displayed below.

Macro Variables Within Title or Footnote Statements

Let us now enclose the title statement within single quotes. This
will cause the macro within the title to not resolve properly.

Line Comment
00008 The title statement includes a call to

macro ds.

The Output shows that the title statement still reads ‘Print of the
data set &ds’.

In other words, within the title statement &ds did not resolve to
‘Computer’ as expected. Elsewhere within the program &ds
resolved appropriately.

A check of the Log shows no syntax errors.

This is one of the few times SAS distinguishes between single
quotes (as used in the above program) and double quotes.

In brief:

• Use double quotes (or no quotes for titles and footnotes)
if you want the macro to resolve.

• To let the ampersand remain – as with R&D – use single

quotes

Refer now to the program with both options used properly.

Line Comment
00008 The title1 statement includes a call to

macro ds. The macro will be resolved
because the title statement uses double
quotes. The same usage for double
quotes applies to footnote statements.

00009 The title2 statement includes &D. SAS will
not attempt to resolve it as a macro D
because the title statement is in single

quotes. The same usage for single
quotes applies to footnote statements.

What would happen if we placed the title2 statement in double
quotes? How would SAS handle the request to resolve the macro
D? The answer depends on a few different parameters.

• First, if previous coding had already defined a macro
variable D, SAS would place its value into the title string.

• Second, if no macro variable D had been defined, SAS

would leave the title string unresolved – Demonstration of
Recent R&D – while giving a Warning message in the log.

If the macro facility fails to find the current value for a macro
variable, the following message appears on the SAS Log:

Warning: Apparent symbolic reference is not
resolved.

SAS refers to macro variables as ‘symbolics’. The Warning
message states that the macro has been resolved.

Symbolgen

The global option Symbolgen is one of several tools available which
make it possible to examine the values of macros as they are
processed. Consider the following example in which the previous
code is run with this option in effect.

The log displays the resolved values of macros as the code is
processed. This can be a useful aid in debugging a program.

This option stays in effect until it is turned off.

%Put Statement

A %put statement will write up to 132 characters of text to the log as
well as the resolved value of a macro. This too can be useful in
debugging a program or just as a tool to see the value of a macro.

For instance, we could examine the values of the macros ds and
byvar with the following code:

Data vs. Macro Variables

It is important to realize that macro variables are not the same as
data set variables.

How are macro variables different from data set variables?

• They are created differently from data set variables.

• They are stored in symbol tables, not data sets.

• A macro variable has a single value whereas a data set
variable can have multiple values depending on the loop
of the data.

Creating Data Set Variables and Macro Variables

SAS can make a data set variable in many ways by using different
syntax options within the Data Step.

Line Comment

00002 The length statement creates space in the
PDV for a new data set variable.

00003 The Set statement reads the SAS data set
saved.demog

00004-
00009

The variables title1 and title2 are created by
assignment.

Although at this point we have only discussed one technique, the
%let statement, there are several ways in which macro variables
can be created. Three techniques are illustrated in the following
example.

Line Comment

00001 The %let statement creates macro variable
mvar.

00004 The Call Symput routine creates macro
variable day.

00009 The Proc SQL into clause creates macro
variable meanage.

The point to remember: the syntax determines what is being
created! There is no ambiguous case between a data set variable
and a macro variable.

Where the Variables and Values Reside

Data set variables and macro variables can have the same name.

They will never replace each other’s values, however.

They live in different structures (a symbol table vs. a data set or the
PDV) and they are called for in different ways.

Line Comment

 The Macro Variable DAY

00001 The %let statement defines macro variable day
as Friday.

00002 The %put shows the value of macro variable
day in the Log.

00004-
00007

The Proc Print of sashelp.vmacro shows the
macro variable in the Output window.

 The Data Set Variable DAY

00012 The data set character variable day is created
through assignment.

00013 The Put statement shows the data set variable
value in the Log.

00015-
00017

The Proc Print of the data set shows the data
set value of day.

Later, we will see how to pass a data set variable value directly into
a macro variable.

Summary

• To define a macro variable, use the following syntax:

%let <macro_variable> = <value>;

Example:

%let ds = demograf;

• To use a macro variable, precede the macro variable
name with an ampersand (&)

Example:

Proc print data = &ds;

• If the macro variable is to be used in quotes, as in a title,

be sure to use double quotes to get the value to resolve.

Title "Report of Data Set &ds";

• Use the global option symbolgen to see the resolved
values of macros in the log.

• Use a %put statement to write the resolved value of a

macro to the log:

%put The value of the macro = &ds;

Differences between data set variables and macro variables:

• Data set variables exist in data sets; macro variables
exist in symbol tables.

• Data set variables are created only in data steps or proc

steps; macro variables can be created with statements
such as %let that are not part of a step.

• A data set variable can have multiple values, whereas a

macro variable can have only one value.

• To get the value of a data set variable, you just use the
name of the variable; to resolve a macro variable, you
must precede the name of the variable with an
ampersand (&)

Automatic Macro Variables

Invoking SAS creates a set of automatic macro variables (assuming
that SAS system options enable the macro facility).

These macro variables and their values are held in the Automatic
Symbol Table (AST). The AST and its variables can only be deleted
by exiting out of SAS.

The automatic macro variables exhibit some distinct features:

The values are set at the start of the SAS session. Therefore, the
automatic macro variables sysdate, systime, and sysday are set
when launching SAS.

Some automatic macro variables – such as sysdate, systime, and
sysday – are read only (R/O) and therefore cannot be changed by
the programmer.

Some automatic macro variables are read-write (R/W). These can
be changed by the programmer.
Determining the Values of Automatic SAS Variables

Automatic macro variables can be viewed using any of the following
three syntax options.

Option 1

Line Comment
00002 The variable “scope” refers to the

referencing environment or table. To see
other variables, use "USER", "LOCAL",
"GLOBAL" in place of "AUTOMATIC"

Option 2

Line Comment
00001 Writes the values of the Automatic macros to the

log. Can also use _global_, _all_, _local_ and
user as needed.

Scope

all Returns all macros in all scopes
automatic Returns all macros in the Automatic Global

Table. These macro variables are available
anywhere in programming.

global Returns programmer-defined macros in the
Global Symbol Table. These macro variables
are available anywhere in programming.

local Returns programmer-defined macros
available only in the current or local scope

user Returns a list of all the programmer-defined
macro variables in the scopes. Useful for
debugging.

Option 3

Shows the results in the Output window.

Summary

• Quite a few macro variables are defined at the time your
SAS session starts. These are available to use any place
you can use macro variables.

• Some of the automatic macro variables have different

values on different operating systems.

• Some of the automatic macro variables may not be

available on all systems.

• To see a list of macro variables, use one of the following

techniques:

o Option 1:
Proc print data = sashelp.vmacro;
 Where scope = "AUTOMATIC";
run;

o Option 2 (this will print in the log instead of the
output window):

%put _automatic_;
o Option 3:

Proc sql;
 Select *
 From dictionary.macros

Where scope =
"AUTOMATIC";
Quit;

• In options 1 and 3 above, "AUTOMATIC" may be
replaced by "USER", "GLOBAL", or "LOCAL" to get
customized lists. Note that since you are specifying the
value of a variable, it is case-sensitive.

• In option 2 above, _automatic_ may be replaced by

user, _local_, _global_, or _user_.

%Let Statement to Create a Macro Variable
We have already seen the %let statement used to create a macro
variable. As stated, within a %let statement the name of the macro
variable is to the left of the equal sign. Everything to the right of the
equal sign up to but not including the semi-colon, except leading
and trailing blanks, is the value of the macro variable.

The following example illustrates these concepts.

Line Comment

00001 Macro variable definition does not include leading
or trailing blanks.

00002 Macro variable definition contains leading and
trailing blanks.

00003 Macro variable definition with leading blanks.

00004 Macro variable value enclosed in single quotes.

What do these macro variables resolve to?

Specifically, what about leading and trailing blanks?

Do quotation marks become part of the value?

We will use the %put statement to examine the values of these
macros.

Inspect the results of these paired %let and %put statements in the
log.

Line Comment

after 17 Resolution of &mvar1 to value

after 20 Resolution of &mvar2 to value (no leading or
trailing blanks)

after 23 Resolution of &mvar3 (no leading blanks on the
macro name)

after 26 Resolution of &mvar4 to ‘value’ (includes
quotes)

In some cases, it is clear that the leading blanks were not included
as part of the macro variable value. (In the Log, they are written
flush with the left margin.)

However, how can we test for trailing blanks?

To do so, insert a character string around the macro variable as
shown.

Inspect the Log again for the macro variable values.

Null Values

One particular %let statement is used to assign a null value to the
macro variable.

Line Comment
00001 %let statement creates a macro variable with null

value. (This will be useful later for controlling
which symbol table receives the macro value as
well as eliminating unwanted macro variable
values.)

%Let Statement – Another Look

Now inspect the following %let statements.

Both will result in the same value for the macro variables.

What is the value? Why?

Line Comment
after 42 The %let statement stops at semi-colon. &var5

resolves to proc print.
after 45 The %let statement stops at first semi-colon.

&var6 resolves to proc print.

The semi-colon has special meaning associated with it. When var5
is defined, the %let statement ends at the semi-colon. The value of
macro variable var5 is proc print.

The same process is followed for var6 where the first semi-colon
ends the %let statement. The semi-colon is not treated as ‘just
another’ keystroke; it has functionality.

There are times when we need characters to be ‘just another’
character without functionality.

%STR and %NRSTR Functions

Two functions – %str() and %nrstr() – provide a means to remove
the special meaning of certain characters:

%str() – eliminates the functionality of most special characters,
except for the ampersand and percent symbols. It does not remove
the meaning of apostrophes.

%nrstr() – eliminates the functionality of most special characters,
including the ampersand and percent symbols. It does not remove
the meaning of apostrophes.

The following table illustrates the use of these two functions.

%let statement Macro
Variable
Call

Macro Variable
Value

%let Task1 = Proc print; &Task1 Proc print

%let Task2=%str(Proc
print;);

&Task2 Proc print;

%let Task3=%str(Proc
print; run;);

&Task3 Proc print; run;

%let More=%str(&task1;
run;);

&More Proc print; run;

%let
More1=%nrstr(&task1;run;
);

&More1 &task1; run;

Macro Call Comment

&Task1 Note that the semi-colon is not part of
the resolved macro value.

&Task2 Note the semi-colon in the resolved
macro value

&More The macro variable &task1 resolves in
the %str() function.

&More1 The macro variable &task1 does not
resolve in the %nrstr() function.

Using the %STR Function

As an example of using the %str function consider the following
code. Proc Print is used to print the first ten observations from a
data set and then Proc Contents is used to display the descriptor
part of the data set.

Assume you wished to run this code multiple times. One approach
would be to type this code whenever needed.

Another approach is to make this entire code a macro variable. To
include the semi-colon as part of the macro value the %str function
is used.

Now, anytime the programmer wishes to use this code, a shorter
syntax can be used.

Now consider a situation in which an apostrophe is part of a macro
variable value. Neither the %str nor the %nrstr functions remove
the functionality of the apostrophe. To remove this special meaning
it is necessary to place a % sign in front of the apostrophe.

Removing Macro Variables from the Global Symbol Table
Once a macro variable is created, that is written to the Global
Symbol Table, it exists until it is explicitly deleted. Symbol tables
will be discussed in greater detail in a subsequent chapter. For
present considerations, it is necessary to know that a macro
variable created by a %let statement in open code (outside a macro
bundle) is written to the Global Symbol Table.

Symdel is used to delete macro variables. Symdel can be used
either as a macro statement or as a call routine in a data step. The
macro statement form is illustrated below.

Line Comment

00001 %let statement creates a macro variable.

00003 %put statement prints the label and variable in the
log.

00005 %symdel statement deletes the macro variable
from the global symbol table.

00007
%put statement attempts to print the variable after
the deletion; the log shows that the variable no
longer exists.

The call routine form of Symdel is illustrated below.

Line Comment

00001 %let statement creates a macro variable.

00003 %put statement prints the label and variable in
the log.

00005 –
00007

The symdel call routine deletes the macro
variable from the global symbol table. Notice
the macro variable reference – no ampersand,
but enclosed in quotes (either single or double
quotes will work)

00009
%put statement attempts to print the variable
after the deletion; the log shows that the
variable no longer exists.

Resolution Considerations

Macro programming relies on invoking a macro value by naming
and resolving the macro variable.

Various programming issues often require a macro variable to be
embedded in another character string. In this chapter we examine
how these macros are identified and processed.

Macro Variable as a Suffix

We have seen that an ampersand followed by a non-blank
character is treated as a macro variable name and resolved.

How is a macro variable name identified and processed when it is
part of another character string? As part of another character
string a macro variable is resolved and the result is concatenated
with the remaining character string. A blank, an ampersand (&) or a
dot (.) indicate the end of a macro variable name.

Consider the following example:

Line Comment

00006 Name of data set being created is work.onlyM.

00007 Data set being read is saved.demograf

00008 Where clause resolves to: where gender=”M”;

Consider a second example:

A SAS library contains data sets named after a state’s two-letter
abbreviation and the fiscal years from 1990 to 1999. Thus, AZ1990,
AZ1991, … AZ1999 are examples of the data set names.

You must change the date structure in each of the 10 data sets as
well as manipulate each data set to produce statistics and graphic
output.

How can macros provide quick access to making changes
accommodating each of the ten data sets?

The solution is a simple application of the %let statement.

Line Comment

00001 Use comments to provide user assistance.

00002
The %let statement allows the year value to
change throughout the program. In this case the
value 1996 has been entered.

00004 Stop the user from making changes where
unnecessary.

All changes are consolidated at the top of the program.

Rather than changing every reference to the data set all through the
entire length of the program, we can reference the data set name
through a macro variable and generate the correct name each time.

Macro Variable as a Prefix

In the next example an attempt is made to use a macro variable in
front of other text.

Line Comment

00004 Resolves to savedcatch

As the log indicates this results in an error.

As part of the process to identify the end of the macro name the dot
(.) is absorbed. Therefore, when the macro resolves, the dot (.) is
removed and not left behind as part of the remaining character
string.
By adding a second dot (.) the macro resolves properly. The first
dot (.) operates as discussed while the second dot (.) is simply part
of the remaining character string.

Line Comment

00004 Resolves to saved.catch

As another example:

A SAS library contains data sets named after each state’s two-letter
abbreviation and the fiscal year 1999. Thus, AZ1999, CT1999,
HI1999, NY1999 are examples of the data set names.

You must change the date structure in each of the 50 data sets as
well as manipulate the data set to produce statistics and graphic
output.

How can macros provide quick access making changes
accommodating each of the fifty data sets?

At first, it would seem that the %let statement would work.

Note: This program demonstrates a programming error.

The program soon shows a problem. Rather than search for the
macro variable st, SAS searches for the macro variable st1999.

The program must be revised to end the macro name explicitly with
a dot (.).

Line Comment
00008,
00009,
00016

The macro variable call of &st. will resolve to the
value desired.

Remember that SAS uses the dot for other syntax reasons such as:

Usage of Dot Example
Multiple-level
names

Source.data
Source.project.data.entry

First-dot / Last-dot If first.gender = 0 then ….;
Formats / Informats Dollar12.2
Missing numerics Where salary ne .;
Naming output Put ‘’;

Append Two Macro Variables Together

Often two or more macro variables are incorporated into a single
character string. Again, the issue is how is the macro variable
name identified and processed.

In the following example the macro variables dsn and n are used
together to identify the data set to be printed. Which data set is
printed?

The ampersand (&) indicates the beginning of a macro variable
name. Therefore, &dsn is considered one macro variable name
while &n refers to a second macro variable. The entire character
string resolves to saved.contour2.

Line Comment
00001,
00003,
00005

Create macro variables dsn, n, and dsn2.

00007,
00008 Resolves to saved.contour2

In the following example a dot (.) indicates the end of the first macro
variable name (&dsn). The dot (.) acts as a delimiter and is
removed as part of the process to identify the macro variable name.
Because a second macro variable name follows, the dot (.) is not
needed. This character string resolves to saved.contour2 just as in
the previous example.

Line Comment
00001,
00003,
00005

Create macro variables dsn, n, and dsn2.

00007,
00008 Resolves to saved.contour2

Finally, consider the following code. Which data set is printed?

Line Comment
00001,
00003,
00005

Create macro variables dsn, n, and dsn2.

00007,
00008 Resolves to saved.oilwell2

Macro Code Buncles

The regular job you submit to backup your data sets or produce
your graphics can all be bundled up into a macro and then 'invoked'
using one word – the name of the macro.

Line Comment
00001-00008 The %let statement used with the %str

function to write a short program.
00010 The macro startup is invoked with

&startup; (i.e., ampersand, name, semi-
colon).

The log shows the results.

Reusing fixed programs is one advantage of a macro. Rather than
retype a lengthy set of programming instructions, it is easier to
create a macro program and call it with a single word.

The limiting feature of the previous example is its inability to adapt
to changing needs. Suppose the programmer needs a different data
set copied.

As currently written it would be necessary to add the name of the
new data set to the Proc Copy select statement. Greater flexibility
can be achieved by incorporating a macro variable into the select
statement.

Line Comment
00006 The &more macro variable makes it possible to

specify additional data sets.

Notice that in the above example a single additional data set has
been copied.

To copy several additional data sets simply list the data sets as the
value of the macro variable.

Line Comment
00006 The %let statement defines multiple data

sets to copy along with the ones already
identified.

%Macro - %Mend

SAS can define a series of programming statements in an alternate
manner.

Rather than use the %let = %str() or %let = %nrstr() syntax, begin
the code with %macro statement and end it with %mend statement.

The rewritten program is shown below.

Line Comment

00001-00009 A macro bundle is created using %macro
and %mend syntax.

00011 The macro bundle startup1 is invoked with
%startup1 (i.e., percent and name only –
no semi-colon).

Notice that the macro call, %startup1, does not include a
semi-colon.

There is no need here as a semi-colon has been generated by the
macro call.

The code within the definition is complete, so no extra semi-colon is
required.

%Macro - %Mend Notes

• A macro bundle – defined by %macro - %mend

statements – must be defined before the named bundle
can be called.

• Macro definitions start with the %macro statement that

defines the name of the macro.

• The definition continues until the %mend statement.

• Including the macro name in the %mend statement is
optional but advised.

• The macro is called or invoked by typing the macro name

(no semi-colon).

A macro may contain:

• Data and Proc step code

• Macro programming statements and functions

As a second example, consider the following code.

How can we bundle this code so all we have to type to execute the
code is a single word?

Use the %macro - %mend syntax.

The macro name may be omitted in the %mend statement because
the SAS System will default to ending the last macro.

However, the %mend statement is critical. The macro processor
takes control when a %macro statement is seen. Should the
%mend be missing, everything from the %macro statement is
regarded as being part of the open macro definition.

There are occasions when all the submitted code appears to be
written to the log and nothing else - the code appears to be
disappearing into a black hole! On such occasions, check for the
absence of a %mend statement.

Macro Bundle Parameters

In the %money example, the data set names were fixed. How can
we write a macro invoking any name for the library and data sets
involved?

The way to do this is to pass parameters to the macro bundle. To
use this method, the macro must be defined as requiring
parameters.

Macro bundle parameters are created by listing variables in a set of
parentheses next to the name of the macro bundle. The
parameters are nothing more than macro variables available for use
within the macro bundle. Within the bundle the macro variables are
referenced just as we have seen before, with an ampersand
followed by the macro variable name. When the macro is called the

values for the parameters are specified in a set of parentheses next
to the name of the macro.

There are two types of macro bundle parameters, positional and
keyword.

Positional Parameters

The following example shows the creation of a single positional
parameter.

Line Comment
00001 The positional parameter lib is established.
00014 The value ‘saved’ replaces each macro

call for &lib.

The above example is logically equivalent to:

 %let lib = saved;

Multiple parameters may be created. Multiple positional parameters
are simply listed with a comma between parameters. For positional
parameters variable names and associated values are determined
by the position or order of the parameters.

In the following example two positional parameters are created.

Line Comment
00001 Two positional parameters are

established, lib and var respectively.
00014 The value ‘saved’ is substituted for the first

positional parameter – lib – and the value
‘outgo’ is substituted for the second
positional parameter – var.

Your macro call must have a number of values matching the
number of positional parameters.

Keyword Parameters

Keyword parameters are defined using the parameter name with an
equal sign. This technique is preferred in certain situations
because:

• It does not require defining and passing parameters in the
same order.

• It allows default values to be used.

Two keyword parameters are created in the following example.

Line Comment
00001 Two keyword parameters are created – lib

and var.
00014
00015

The values are assigned for the keyword
parameters. The order of assigning values
is not important with keyword parameters.

In the next example default values are assigned to the macro
parameters.

Line Comment
00001 Two keyword parameters are created, with

default values assigned.
00014 The macro invocation uses the default

parameters.

Parentheses must be used when invoking a macro with keyword
parameters. If no values are being passed an empty set of
parentheses is used.

Null Values

With positional parameters null values are assigned by using a
comma as a 'placeholder':

Line Comment
00001 Three positional parameters are defined.
00007 Each positional parameter is given a value.
00008 The second parameter – opts – lacks a

value. A null value is given. No print
options are defined.

00009 The second and third parameters – opts
and feature – lack values. Null values are
given.

A null value is assigned for keyword parameters by simply omitting
the parameter.

Line Comment
00001 Three keyword parameters are defined

without default values.
00007-00008 All three keyword parameters are given

values. The order of the parameters is not
important.

00009 The second parameter – opts – has not
been listed. It receives a null value.

00010 The second and third parameters – otps
and feature – are not listed and receive
null values.

Combination of Positional and Keyword Parameters

If positional and keyword parameters are used together, the
positional parameters must be listed first.

Line Comment
00001 Three parameters are defined, only one of

which is positional and two are keyword.
00007-00008,
00009,
00010

The macro bundle call references the
positional parameter(s) first. Any keyword
parameters can be referenced only after
the positional parameters are given.

Macro Debugging Options

A major challenge of the programmer is to verify that syntax written by
a macro and values passed are correct. As for assuring the latter, the
programmer can insert a series of %put statements in the syntax
while it is being written. If the predicted values match the displayed
values, the program is in good shape. The SAS session can also use
three system options to see more information about the processing of
macro code and values.

While developing macros, consider using any of three options.

Consider the following program with various macro options invoked
one at a time.

Symbolgen shows the values of macro variables.

Mprint writes the code actually created by the macro syntax to the Log
window.

Mlogic allows the programmer to trace the flow of the macro
execution.

When not developing macros, efficiency considerations suggest
turning off the macro debugging options.

Optional - Variable Numbers of Parameters

Sometimes you may want to write a macro to contain a variable
numbers of parameters.

For example, the %age macro as defined below can only process
five data sets.

What if we wanted to write a utility macro so we could process any
number of data sets?

A way to accomplish this is to use the Parmbuff option.

Define the macro in the normal way except for the / PARMBUFF
option.

Here, all supplied parameters, including any special characters
used, are assigned to the automatic local macro variable &Syspbuff
which is then manipulated in the macro by macro programming
statements.

The call displayed in the code displayed below gives a value to
&syspbuff of library=mylib,new,old_0,old_1,old_2.

Parameters may also be included in the definition

In the above example, a different number of parameters can be
supplied as long as there is at least one.

The call gives a value to &syspbuff of mylib,new,old_0,old_1,old_2
and &posparm the value mylib.

Here the value (age salary weight cars) has been passed to
&syspbuff.

The _null_ data step is required to remove the parentheses from
around the variable names.

&Syspbuff is found in a symbol table local to the executing macro.

