Macros - Basic

Prepared by

dEsrin

CORPORATION

International SAS® Training and Consulting

Destiny Corporation
100 Great Meadow Rd Suite 601
Wethersfield, CT 06109-2379
Phone: (860) 721-1684 1-800-7TRAINING Fax: (860)
721-9784
Email: info@destinycorp.com
Web: www.destinycorp.com
Copyright 2003

Introduction to Macros in SAS

Why learn macros? In brief, they provide the only solution to certain
programming goals. Further, they greatly reduce the amount of
work required to achieve some goals. These facts will become clear
as the curriculum continues.

Macros are used to:

. Change code easily, making code more flexible.
. Conditionally generate and execute code.
. Generate repetitive code.

. Pass variable information across Step boundaries.

A macro is stored text that can be referenced (or “called”) using
another, shorter name. In effect the macro environment allows the
programmer to take one set of text and convert it to another text
string according to well defined rules.

The macro environment allows a programmer to write customized
syntax, which can be reused whole or modified with different
parameters to produce varied output. Macros allow the programmer
to set different values for data sets, variables, statistics, etc. each
time the syntax runs. Rather than sift through hundreds of lines of
code to find and change select references, the macro is coded with
parameters, which need to be changed once each time the syntax
runs.

As one example of where macros might be used consider the
situation where you wish to include a summary statistic, such as
average salary, in a title statement. The average salary could be
stored in a data set, but how would the title pick up the value?
Alternatively, the programmer could ‘hard code’ the value into the
title. But what happens if the data set values for salary change? The
programmer would have to be involved interactively every time the
program runs. Hardly satisfactory!

In contrast, the value of average salary could be saved as a macro
variable. The title statement can then reference the macro variable
which would resolve to the value of average salary.

Macro Variables

In this module, we discuss two special characters:

e ampersand (&)
e percent (%).

Both characters have special functionality within the macro
environment.

Naming conventions are to be followed for macro names, macro
bundle names, and parameter names. Although these terms are
still undefined, bear in mind the following when assigning names:

e Any valid SAS name according to the Operating System
and SAS version is generally acceptable

. SAS has reserved some names for other use. Do not use
the following words when programming in macros:

ABEND ABORT ACT ACTIVATE BQUOTE
BY CLEAR CLOSE CMS COMANDR
COPY DEACT DEL DELETE DISPLAY
DMIDSPLY DMISPLIT DO EDIT ELSE
END EVAL FILE GLOBAL GO

GOTO IF INC INCLUDE INDEX
INFILE INPUT KEYDEF LENGTH LET

LIST LISTM LOCAL MACRO MEND
METASYM NRBQUOTE NRQUOTE NRSTR ON

OPEN PAUSE PUT QSCAN QSUBSTR
QUOTE QUPCASE RESOLVE RETURN RUN
SAVE SCAN STOP STR SUBSTR
SUPERQ SYSEXEC SYSGET SYSRPUT THEN

TO TSO UNQUOTE UNSTR UNTIL

UPCASE WHILE WINDOW

An attempt to call a macro by a reserved name will result in a
warning message. The macro will be neither compiled nor available
for use.

%Let Statements

A %let statement is one method used to create a macro variable.
Within a %let statement the name of the macro variable is to the left
of the equal sign. Everything to the right of the equal sign up to but
not including the semi-colon, except leading and trailing blanks, is
the value of the macro variable. We will discuss the %let statement
in greater detail in a subsequent chapter.

We wish to consider the following example to demonstrate use of
the ampersand and percent symbols.

Ed Program E ditor - (Untited) I [=] B3
Command ===) [
00001 Xlet ds=demogius;

00002

00003 proc sort datazsaved.&ds outzwork.%ds;

00004 by gender;

00005 run;

00005

00007 title "Print of Sorted data set”;

00008

00009 proc print datazuork.kds;

00010 by gender;

00011 run;

00012 ha
4 | L

00001
Define a macro variable called ds with its value.
The presence of a % followed by a non-blank
character triggers the macro facility. A %let tells
the macro facility that a macro variable is to be
defined. The %let statement can appear
anywhere within a SAS program to define one
macro variable at a time.

00003
00009 | Use &ds (ampersand+macro variable name) to
invoke the value.

When the SAS Supervisor sees an ampersand followed by a
non-blank character, the macro facility is activated. In turn, the

macro facility determines the value for the macro variable and
passes the value back on to the input stack. 00008 The title statement includes a call to
macro ds.

A partial listing of the output is displayed below.

B Output - (Untitled) [m=E3]]
Command ===> ~ Print of the data set &ds
Print of Sorted data set
——————————————————————————————— TYPE=DESKTOP - --=-==-===========~-
————————————————————————————————— gelndeies i e e e e
Obs CATNUM SUPPLIER cPU DISK WHOLESAL
Obs staffno name age height weight status child
| oose ulla rendiebury 21 s3.0 s n . 11 ruoeey coweureRs as 20 ss0
EJN00S SO men]l 18 ey EERS L0 e & i 3 3 FLOPPY COMPUTERS 286 100 750
S0 < anyollc s ordh 26 56.0 I g ! q y FLOPPY COMPUTERS 3868K 4o 750
4 0094 Helen Cinderford, 31 B67.0 69 M 0
5 0038 Jennifer Dawson 36 63.0 71 W 1 5 5 FLOPPY COMPUTERS 386SK 100 950
6 0021 Shirley Walters 4o 66.0 81 M 2 3 B8 FLOPPY COMPUTERS 386DX 40 850
T 0085 Dawn Duvet 42 TH.g 68 M 3 7 7 FLOPPY COMPUTERS 386DX 100 1250
8 0071 Deborah Bolling 46 68.0 2 P 3 8 8 FLOPPY COMPUTERS 4865X 4o 1350
9 0074 Joanne Kinderly 49 T1.0 78 M 1y 9 9 FLOPPY COMPUTERS 4gesK 100 1850
< > < >
The code executes as if the programmer had submitted the The Output shows that the title statement still reads ‘Print of the
following: data set &ds’.
e F In other words, within the title statement &ds did not resolve to
00001 t data= d .d i 1= k. di i H 0 H
PO sendar; 9IS putsuark.denos fus ‘Computer’ as expected. Elsewhere within the program &ds

run;

resolved appropriately.

title ’Print of sorted data set’;

proc print dataswork.demogius;

B A check of the Log shows no syntax errors.
Bl Log - (Untitled) Q@@
. . Command A
What is the advantage of using the macro %let statement over 57 %let ds=computer;
. . . . 38 %let byvar=type;
direct coding? Consider how easily changes can be made should a 39
new data set be used. It would also be easy to use a different By i ProC o ey ot Bde outsuork.ds;
variable in the By statement. 2 rum
NOTE: There were 36 obseruations read from the data set SAVED.COMPUTER.
. 3 NOTE: The data set WORK.COMPUTER has 36 obseruations and 7 variables.
The following program shows easy code changes with macros. NOTE: PROCEDURE SORT used:
real time 0.06 seconds
cpu time 0.06 seconds
g‘;’;’;?"glzizés = Computer; 13
00002 Alat byvar o tupe; 44 title *Print of the data set &ds’:
00004 proc sort datazsaved.fds outsuork.Sds; 32 proc print data=work.gds;
00005 by &byvar; 7 by &byuar;
g:ggn_s’ run; H8 run;
00008 title 'Print of Sorted Data Set’;
00009 NOTE: There were 36 obseruations read from the data set WORK.COMPUTER.
00010 proc print datazwork.®ds; NOTE: PROCEDURE PRINT used:
gxg:é by &byvar; real time 0.01 seconds
s M - cpu time 0.01 seconds v
i | L1 < >

This is one of the few times SAS distinguishes between single
00001 The %let statements now refer to an entirely quotes (as used in the above program) and double quotes.
00002 different data set and By variable.

In brief:

A partial listing of the new output is displayed below.

. Use double quotes (or no quotes for titles and footnotes)

£ Output - (Untitled) if you want the macro to resolve.
Print of Sorted data set . . .
_______________________________ TYPEZDESKTOP —mcmemmcmmom e | . To let the ampersand remain — as with R&D — use single
quotes
Obs CATNUM SUPPLIER CPU DIsSK WHOLESAL
1 1 FLOPPY COMPUTERS 286 20 550 1 1
5 E ElorcyRcoMElTERe See S &00 Refer now to the program with both options used properly.
3 3 FLOPPY COMPUTERS 286 100 750
4 Y FLOPPY COMPUTERS 386SX% 4o 750 =
5 5 FLOPPY COMPUTERS 3865K 100 950 i pico k) =g
3 B8 FLOPPY COMPUTERS 386DX 4o 950 ds = Computer; 1
T T FLOPPY COMPUTERS 386DX 100 1250 #Zlet byvar = type;
8 8 FLOPPY COMPUTERS H86SK Ho 1350 00004 proc sort data=saved.&ds out=uwork.&ds;
9 3 FLOPPY COMPUTERS 4868X% 100 1550 @ 00005 by byuvar;
00006 run;
< > 00007
00008 ti1|=| "Print of the data set &ds’’;
g::l‘)g title2 'Results of Current R&D’;
Macro Variables Within Title or Footnote Statements e CICR ol CLE~EEL
00013 run; ’
. e . e | i
Let us now enclose the title statement within single quotes. This -
will cause the macro within the title to not resolve properly. .
Line Comment
00008 The title1 statement includes a call to
Go0n: et vasComputer; . j macro ds. The macro will be resolved
00002 Xlet b =t H .
I A because the title statement uses double
00004 proc sort data=saved.&ds out=work.&ds;
o005 oy soyuar quotes. The same usage for double
00008 title "Print of the dats set fds’; quotes applies to footnote statements.
80076 proc print datasuark.kds; 00009 The title2 statement includes &D. SAS will
00011 by &b H .
duciz runs . not attempt to resolve it as a macro D
i] ol because the title statement is in single

quotes. The same usage for single
quotes applies to footnote statements.

B Output - (Untitled)

Command = A
Print of the data set computer
Results of Current R&D

------------------------------- TYPE=DESKTOP ---=--====----------=
Obs CATNUM SUPPLIER CPU DISK WHOLESAL

1 1 FLOPPY COMPUTERS 286 20 550

2 2 FLOPPY COMPUTERS 286 4o 600

3 3 FLOPPY COMPUTERS 286 100 750

4 Y FLOPPY COMPUTERS 3868X% 4o 750

S 5 FLOPPY COMPUTERS 3865 100 950

6 6 FLOPPY COMPUTERS 386DX 4o 950

T T FLOPPY COMPUTERS 386DX 100 1250

8 8 FLOPPY COMPUTERS H865K Ho 1350 @
< B

What would happen if we placed the title2 statement in double
quotes? How would SAS handle the request to resolve the macro
D? The answer depends on a few different parameters.

. First, if previous coding had already defined a macro
variable D, SAS would place its value into the title string.

. Second, if no macro variable D had been defined, SAS
would leave the title string unresolved — Demonstration of

Recent R&D — while giving a Warning message in the log.

If the macro facility fails to find the current value for a macro
variable, the following message appears on the SAS Log:

Warning: Apparent symbolic reference is not
resolved.

SAS refers to macro variables as ‘symbolics’. The Warning
message states that the macro has been resolved.

Symbolgen

The global option Symbolgen is one of several tools available which
make it possible to examine the values of macros as they are
processed. Consider the following example in which the previous
code is run with this option in effect.

B3 Program Editor - m1_6
Command === -~
00001 options symbolgen;

00003 %let ds=computer:
00004 Xlet byuar=type;

00008 proc sort dats=saved.8ds out-work.&ds;
00007 by &byuar:
00008 run;

el "Print of the data set &ds™:
e2 °'Results of Current R&D’;

00013 proc print data=work.&ds;
00014 by &byvar;
00015 run; <

The log displays the resolved values of macros as the code is
processed. This can be a useful aid in debugging a program.

Bl Log - (Untitled)

>
31 options symbolgen;

32
33 %let ds=Computer;
34
35 %let byvar=type:
36

37 proc sort data=saved.&ds out=work.&ds;
ISYMBOLGEN: Macro variable DS resolues to Computer
ISYMBOLGEN: Macro variable DS resolves to Computer
ISYMBOLGEN: Macro variable BYVAR resolues to type
38 by &byvar:

39 run; v
<

This option stays in effect until it is turned off.

E3 Program Editor - {Untitled)

Command ===> =
00001 options nosymbolgen;

00002 &
< >
%Put Statement

A %put statement will write up to 132 characters of text to the log as
well as the resolved value of a macro. This too can be useful in
debugging a program or just as a tool to see the value of a macro.

For instance, we could examine the values of the macros ds and
byvar with the following code:

B3 Program Editor - (Untitled)
[Command >

00001 Zput Value of ds= &ds:

00002

00003 Xput Value of By variable= &byvar;
nnnnud

B Log - (Untitled)

Command ===)>

84 Jput Value of ds= &ds:
Value of ds= computer

85

86 %put Value of By variable= &byvar;
Value of By variable= type

< >

Data vs. Macro Variables

It is important to realize that macro variables are not the same as
data set variables.

How are macro variables different from data set variables?
e They are created differently from data set variables.
e They are stored in symbol tables, not data sets.
e A macro variable has a single value whereas a data set

variable can have multiple values depending on the loop
of the data.

Creating Data Set Variables and Macro Variables

SAS can make a data set variable in many ways by using different
syntax options within the Data Step.

[#] Program Editor - codel

00002 length titlel $ 4;

00003 set saved.demog;

00004 if gender = “M” then do;
00005 titlel="Mr.

00006 tit|e2=”Sir”;

00007 end:
00008 else if status in (“S” *D*) then titlel ="Ms™;

00009 else titlel = "Mrs.

00010 run:

00011

00012 proc print data=work.new(obs=5);

00013 var name gender titlel title2:

00014 run; a@

< >

Line Comment

00002 The length statement creates space in the
PDV for a new data set variable.

00003 The Set statement reads the SAS data set
saved.demog

00004- The variables title1 and title2 are created by

00009 assignment.

Although at this point we have only discussed one technique, the
%let statement, there are several ways in which macro variables
can be created. Three techniques are illustrated in the following
example.

- (Uniitled)

%let muar = Monday;

data _nul
00004 call symput (’day’, Tuesday”);
00005 run;

00007 proc SGL noprint;

00008 select mean(age]

00009 into : meanage
00010 from saved.demogius;
00011 quit;

Line Comment

00001 The %let statement creates macro variable
mvar.

00004 The Call Symput routine creates macro
variable day.

00009 The Proc SQL into clause creates macro
variable meanage.

The point to remember: the syntax determines what is being
created! There is no ambiguous case between a data set variable
and a macro variable.

Where the Variables and Values Reside

Data set variables and macro variables can have the same name.

They will never replace each other’s values, however.

They live in different structures (a symbol table vs. a data set or the
PDV) and they are called for in different ways.

0001 ay = Friday;
00002 /pu1 &day

oeovsleracioniotice.aseashaliot snac o (r.lrnp offset);

00005 title "Print of Macro Variablie”

00006 where scope = "GLOBAL® and name = ‘DAY’ ==
00007 run

00003 /% UERSUS %/
dats nowd
ay= Saturday
Pk ey
un;
itle "Print of Data Set Variable”;
run;

o
1
2
3
M
5 proc print dataswork.newds;
]
7
8
9 titles

o

Line Comment

The Macro Variable DAY

00001 The %let statement defines macro variable day
as Friday.

00002 The %put shows the value of macro variable
day in the Log.

00004- The Proc Print of sashelp.vmacro shows the

00007 macro variable in the Output window.

The Data Set Variable DAY

00012 The data set character variable day is created
through assignment.

00013 The Put statement shows the data set variable
value in the Log.

00015- The Proc Print of the data set shows the data

00017 set value of day.

Later, we will see how to pass a data set variable value directly into
a macro variable.

Summary
e To define a macro variable, use the following syntax:
%let <macro_variable> = <value>;
Example:
%let ds = demograf;

e To use a macro variable, precede the macro variable
name with an ampersand (&)

Example:
Proc print data = &ds;

. If the macro variable is to be used in quotes, as in a title,
be sure to use double quotes to get the value to resolve.

Title "Report of Data Set &ds";

. Use the global option symbolgen to see the resolved
values of macros in the log.

. Use a %put statement to write the resolved value of a
macro to the log:

%put The value of the macro = &ds;
Differences between data set variables and macro variables:

. Data set variables exist in data sets; macro variables
exist in symbol tables.

. Data set variables are created only in data steps or proc
steps; macro variables can be created with statements
such as %let that are not part of a step.

e Adata set variable can have multiple values, whereas a
macro variable can have only one value.

e To get the value of a data set variable, you just use the
name of the variable; to resolve a macro variable, you
must precede the name of the variable with an
ampersand (&)

Automatic Macro Variables

Invoking SAS creates a set of automatic macro variables (assuming
that SAS system options enable the macro facility).

These macro variables and their values are held in the Automatic
Symbol Table (AST). The AST and its variables can only be deleted
by exiting out of SAS.

The automatic macro variables exhibit some distinct features:

The values are set at the start of the SAS session. Therefore, the
automatic macro variables sysdate, systime, and sysday are set
when launching SAS.

Some automatic macro variables — such as sysdate, systime, and
sysday — are read only (R/O) and therefore cannot be changed by
the programmer.

Some automatic macro variables are read-write (R/W). These can
be changed by the programmer.
Determining the Values of Automatic SAS Variables

Automatic macro variables can be viewed using any of the following
three syntax options.

Option 1

B3 Program Editor - [Untitled) -0 x]
Command == i’
00001 proc print data=sashelp.vmacro;

00002 where scope = “AUTOMATIC™;

00003 run;

00004 -
< i

Comment

00002 The variable “scope” refers to the
referencing environment or table. To see
other variables, use "USER", "LOCAL",
"GLOBAL" in place of "AUTOMATIC"

i Output - (Untitled) JH[=] E3 |
Obs. scope name offset value B
1 AUTOMATIC AFDS 1D 0 0
7 AUTOMATIC SYSBUFFR 0
8 AUTOMATIC SYSI 0 0
9 AUTOMATIC SYSCHARWIDTH 0 1
13 AUTOMAT I C 0 Friday
15 AUTOMATIC SYSDMG 0 o
16 AUTOMATIC SYSDSN 0 ZNULL_
17 AUTOMAT I C SYSENV 0 FORE
22 AUTOMATIC SYSJOBID 0 4294653233
23 AUTOMATIC 0 —NU
24 AUTOMATIC SYSLCKRC 0
& ATowATic Svaliske -
30 AUTOMATIC SYSPBUFF 0
31 AUTOMATIC SYSPROCESS D 0 41D2D85B871666664010000000000000
32 AUTOMATIC SYSPROCESSNAME 0 IS Process
1] : 1Y
Option 2
I Pragram Editor - (Untitled) =[0]x]
Command ==z) | fl
00001 Xput _automatic_;
[v
4 | * 4
00001 Writes the values of the Automatic macros to the
log. Can also use _global_, _all_, _local_ and
user as needed.

Scope

all

Returns all macros in all scopes

automatic | Returns all macros in the Automatic Global

Table. These macro variables are available
anywhere in programming.

global Returns programmer-defined macros in the
Global Symbol Table. These macro variables
are available anywhere in programming.

local Returns programmer-defined macros
available only in the current or local scope

user Returns a list of all the programmer-defined

macro variables in the scopes. Useful for
debugging.

AUTOMA
AUTOMA
AUTOMA
AUTOMA

automatic
AUTOMATIC AFDSID 0
AUTOMATIC AFDSNAME
AUTOMATIC AFLIB

SYSDATES 28JANZ000
SYSDAY Friday
SYSDEVIC
SYSDMG 0
SYSDSN

SYSENU FORE
SYSERR 0
SYSFILRC 0
SYSINDEX 0
SYSINFO 0

SYSJOBID 4294653233

SYSLAST _NULL_

SYSLCKRC0

SYSLIBRC 0 -
SYSHAXLONG 2147483647

SYSHENU S

SYSMSG

SYSPARM

SYSPBUFF
SYSPROCESSID 41D2D85B871666664010000000000000
SYSPROCESSNAME DMS Process

SYSRC 0

NULL

bption 3

00002
00003

00005

‘

E Program Editor - (Untitled) [-[O[x]
Command ===) -
00001 proc sql;

select #

00004 quit;

from dictionary.macros;

| iz

Shows the results in the Output window.

Macro
Scope

Macro
Macro Variable Name Variable Macro Uariable Value

I [=] ES |

oLOoBAL.
GLOBAL

AUTOMAT I C
7}

SGLOBS
SGLOOPS

SYSERR
SYSFILRC

0

0

0

o

0

0

0

0

0

0

sysce 0
SYSCHARWIDTH 0o 1

S 0

0

0

0

0

0

0

o

0

[

0
0
0
o

o

28JANOO
28JAN2000
Friday

o

NULL_
FORE
0

: o

Summary

Quite a few macro variables are defined at the time your
SAS session starts. These are available to use any place
you can use macro variables.

Some of the automatic macro variables have different
values on different operating systems.

Some of the automatic macro variables may not be
available on all systems.

To see a list of macro variables, use one of the following
techniques:

o Option 1:
Proc print data = sashelp.vmacro;
Where scope = "AUTOMATIC";
run;

o Option 2 (this will print in the log instead of the

output window):

%put _automatic_;

o Option 3:

Proc sql;
Select *
From dictionary.macros
Where scope =
"AUTOMATIC";
Quit;

. In options 1 and 3 above, "AUTOMATIC" may be
replaced by "USER", "GLOBAL", or "LOCAL" to get
customized lists. Note that since you are specifying the
value of a variable, it is case-sensitive.

. In option 2 above, _automatic_ may be replaced by
user, _local_, global_, or _user_.

%Let Statement to Create a Macro Variable

We have already seen the %let statement used to create a macro
variable. As stated, within a %/et statement the name of the macro
variable is to the left of the equal sign. Everything to the right of the
equal sign up to but not including the semi-colon, except leading
and trailing blanks, is the value of the macro variable.

The following example illustrates these concepts.

E3 Program Editor, - (Untitled)

Command ===> ~
00001 Xlet muari=value;

00002 %let muar2= value 5

00003 Xlet muar3 = value;

00004 %let muard= ‘uvalue’; 2
< >

Line Comment

Macro variable definition does not include leading
or trailing blanks.

Macro variable definition contains leading and
trailing blanks.

00001

00002

00003 | Macro variable definition with leading blanks.

00004 | Macro variable value enclosed in single quotes.

What do these macro variables resolve to?
Specifically, what about leading and trailing blanks?

Do quotation marks become part of the value?

We will use the %put statement to examine the values of these
macros.

I Program E (Untitled) I [=]

Command === 1=
00001 %let mvarl = value;

00002 Xput muari;

00003

00004 %let myarz = value
00005 Xput 2mMUarz;

00006

00007 Xlet mvar3 = value;
00008 Xput 2mMuar3;

00009

00010 Xlet mvard = “value’;
00011 Xput muarH;

0?0]2 N
bl

Inspect the results of these paired %let and %put statements in the
log.
B Log - (Untitled)

Zlet mvari = value;
Zput &mvari;

muarz = value
anvare;

%let mvara = value;
Zput smuara;
2 lue

25 zlet muard = ‘value’;
26 Zput &mvard;
Tvalue’

]

after 17 Resolution of &mvar1 to value
after 20 Re_s_olutlon of &mvar2 to value (no leading or
trailing blanks)
Resolution of &mvar3 (no leading blanks on the
after 23
macro name)
Resolution of &mvar4 to ‘value’ (includes
after 26
quotes)

In some cases, it is clear that the leading blanks were not included
as part of the macro variable value. (In the Log, they are written
flush with the left margin.)

However, how can we test for trailing blanks?

To do so, insert a character string around the macro variable as
shown.

[Program Editor - (Untitled) I [=]

Command = > -
00001 Xlet mvarl = value;

00002 Xput ®xx&mvarixxs;

00003

00004 Xlet muarz = value H

00005 Xput ®XESMVArZHER;

00006

00007 Xlet mvar3 = value;

00008 Xput **X2MUBFIEEE;

00009

00010 Xlet mvard = “value’;

00011 Xput ¥XEZMUArYH¥¥E;

ooo012 i
gooie

ti | 5E

Inspect the Log again for the macro variable values.

8 Log - (Untitled) =] 5|
27 #let mvarl = value; =
28 7Zput xaxgmuariExs;

#2x0alUskrs

28
30

%let mvarz = value

31 Zput *xxZmuarzxxx;
*¥xualuersx

32

33 zlet mvara = value;

34 Zput *E*EMUBrIERX;
*xxvaluersx
35

36 zlet muard = ‘value’;

37 Zput *E*EmuaruExx;
*xxTuaiue’*ax

a of

Null Values

One particular %let statement is used to assign a null value to the
macro variable.

[Program Editor - (Untitled) -[O[x]
Command
00001 Xlet newvars;

00002

00003 Xput **EZnEwWvarsEx;

00004 v

« | o

00001 | %let statement creates a macro variable with null
value. (This will be useful later for controlling
which symbol table receives the macro value as
well as eliminating unwanted macro variable
values.)

Bl Log - (Uniitied)
38 Zlet newvars;
3

9
MO Zput #EEXnewvarikE;
(P11

] H/

%Let Statement — Another Look
Now inspect the following %let statements.
Both will result in the same value for the macro variables.

What is the value? Why?

£ Program Editor - (Untitled) (o] x]
Command ===> x
00001 %let vars=proc print;

00002 Xput ®x*ZvarSxxx;

00003

00004 ¥%let var6sproc print; run;
00005 Aput ¥¥ERUarEXEx;

00006

« | L7

B Log - (Untitled)

41 Zlet vars=proc print;
ZpUt EEFBUBrEEEE;
*2proc printss

44 zlet varé=proc print; run;
R
*2proc printsss

4 r

after 42 The %let statement stops at semi-colon. &var5
resolves to proc print.

after 45 The %let statement stops at first semi-colon.
&var6 resolves to proc print.

The semi-colon has special meaning associated with it. When varb
is defined, the %let statement ends at the semi-colon. The value of
macro variable var5b is proc print.

The same process is followed for var6 where the first semi-colon
ends the %let statement. The semi-colon is not treated as ‘just
another’ keystroke; it has functionality.

There are times when we need characters to be ‘just another’
character without functionality.

%STR and %NRSTR Functions

Two functions — %str() and %nrstr() — provide a means to remove
the special meaning of certain characters:

%str() — eliminates the functionality of most special characters,
except for the ampersand and percent symbols. It does not remove
the meaning of apostrophes.

%nrstr() — eliminates the functionality of most special characters,
including the ampersand and percent symbols. It does not remove
the meaning of apostrophes.

The following table illustrates the use of these two functions.

%let statement Macro Macro Variable
Variable | Value
Call

%let Task1 = Proc print; &Task1 Proc print

Y%let Task2=%str(Proc &Task2 Proc print;

print;);

%let Task3=%str(Proc &Task3 Proc print; run;

print; run;);

Y%let More=%str(&task1; &More Proc print; run;

run;);

Y%let &More1 &task1; run;

More1=%nrstr(&task1;run;

Macro Call Comment

&Task1 Note that the semi-colon is not part of
the resolved macro value.

&Task2 Note the semi-colon in the resolved
macro value

&More The macro variable &task1 resolves in
the %str() function.

&More1 The macro variable &task1 does not
resolve in the %nrstr() function.

Using the %STR Function

As an example of using the %str function consider the following
code. Proc Print is used to print the first ten observations from a
data set and then Proc Contents is used to display the descriptor
part of the data set.

E3 Program Editor - m3_6

Command ===> -~
00001 proc print data=saved.demog (obs=10) noobs;

00002 run;

00003

00004 proc contents data=saved.demog:

00005 run;

Assume you wished to run this code multiple times. One approach
would be to type this code whenever needed.

Another approach is to make this entire code a macro variable. To
include the semi-colon as part of the macro value the %str function
is used.

Bl Program Editor - m3_7

Command ===> ~
00001 %let debug = ¥str(

00002 proc print data=saved.demog (obs=10) noobs;

00003 run;

00004

00005 proc contents data=saved.demog;
00006 run;

00007 IH

< bd

Now, anytime the programmer wishes to use this code, a shorter
syntax can be used.

B Program Editor - (Untitled) L [ofx]
Command ===) a
00001 &debug;

nlrnﬂ? v
‘ | uy

Now consider a situation in which an apostrophe is part of a macro
variable value. Neither the %str nor the %nrstr functions remove
the functionality of the apostrophe. To remove this special meaning
it is necessary to place a % sign in front of the apostrophe.

B3|Program Editor - macro24

[Command === ~
00001 Xlet name=Xstr(From AmericaX’s Corp.):
00002

00003 title “&name™;

00004 proc print data=saved.demograf;
00005 run;

00008 title;

[Command ===> ~
From America’s Corp.

Obs age gender salary status children
1 34 M 40000 M 4
2 34 M 23000 M 3
3 36 M 23000 M 2
H Ho M 12300 M 2
5 28 M 12000 M 2 a
< >

Removing Macro Variables from the Global Symbol Table
Once a macro variable is created, that is written to the Global
Symbol Table, it exists until it is explicitly deleted. Symbol tables
will be discussed in greater detail in a subsequent chapter. For
present considerations, it is necessary to know that a macro
variable created by a %let statement in open code (outside a macro
bundle) is written to the Global Symbol Table.

Symdel is used to delete macro variables. Symdel can be used
either as a macro statement or as a call routine in a data step. The
macro statement form is illustrated below.

iofx|
Command ===> ﬁ‘
00001 %let company = SAS Institute:

00002

00003 Zput company = &company;

00004

00005 “symdel company;

00006

00007 %put company = &company; -
agace ; o

[Woo-wnied) =101 x|
Command ===> | |

954 Zlet company = SAS Institute;
955

956 “put company = Zcompany;
company = SAS Institute

957

958 symdel| company;

959

960 put company = Zcompany;

WARNING: Apparent symbolic reference COMPANY not resolved.

company = &company s
5 o6

00001 %let statement creates a macro variable.

%put statement prints the label and variable in the
log.

%symdel statement deletes the macro variable
from the global symbol table.

%put statement attempts to print the variable after
00007 | the deletion; the log shows that the variable no
longer exists.

00003

00005

The call routine form of Symdel is illustrated below.

Command ===> -
00001 %let company = SAS Institute;

00002

00003 Zput company = &company;

00004

00005 data _null_;

00006 call symdei(“company™);

00007 run;

00008

00009 %put company = fcompany; -
o
Command ===> =l
961 Zlet company = SAS Institute;

963 put company = &company;
company = SAS Institute
964

965 data _null_;
966 call symdei (“company”):
967 run;
NOTE: DATA statement used:
real time 0.00 seconds
cpu time 0.00 seconds
WARNING: Apparent symbolic reference COMPANY not resoluved.
968

969 put company = &company;
company = &company

4 o

00001 %let statement creates a macro variable.

%put statement prints the label and variable in
the log.

The symdel/ call routine deletes the macro
variable from the global symbol table. Notice
the macro variable reference — no ampersand,
but enclosed in quotes (either single or double
quotes will work)

%put statement attempts to print the variable
00009 after the deletion; the log shows that the
variable no longer exists.

00003

00005 -
00007

Resolution Considerations

Macro programming relies on invoking a macro value by naming
and resolving the macro variable.

Various programming issues often require a macro variable to be
embedded in another character string. In this chapter we examine
how these macros are identified and processed.

Macro Variable as a Suffix

We have seen that an ampersand followed by a non-blank
character is treated as a macro variable name and resolved.

How is a macro variable name identified and processed when it is
part of another character string? As part of another character
string a macro variable is resolved and the result is concatenated
with the remaining character string. A blank, an ampersand (&) or a
dot (.) indicate the end of a macro variable name.

Consider the following example:

B Program Editor - m4_1

00001 Xlet dsn=demograf;
00002 Xlet gend=M;

00003

00004 title “Output for Data Set &dsn™;

00005

00006 data work.only&gend:

00007 set saved.&dsn;

00008 where gender="%gend”;

00009 run;

00010 proc print data=work.only2gend:

00011 run; 3
< >

00006 | Name of data set being created is work.onlyM.

00007 | Data set being read is saved.demograf

00008 | Where clause resolves to: where gender="M”";

Consider a second example:

A SAS library contains data sets named after a state’s two-letter
abbreviation and the fiscal years from 1990 to 1999. Thus, AZ1990,
AZ1991, ... AZ1999 are examples of the data set names.

You must change the date structure in each of the 10 data sets as
well as manipulate each data set to produce statistics and graphic
output.

How can macros provide quick access to making changes
accommodating each of the ten data sets?

The solution is a simple application of the %let statement.

B Program Editor - m4_2

Command ===>

00001 #% Till in the year value below */

0000 *let year=1996;

00003

00004 /2% * EEXRRER * EEXER
00005 No changes required in program below this point
00006 X%%% * REEEXER * EREERS
00007

00008 data work.azsyear;

00009 set archives.az&year;

00010 datel=substr(date,1.5);

00011 dateg=substr(date,B,2);

0oo12 date=trim(datel)|]|’19°||trim(date2);

00013 drop datel dateZ;

00014 run;

00015

00016 proc means dataswork.az&year;

00017 Fun;

00018

00019

00020 b
<

00001 | Use comments to provide user assistance.

The %let statement allows the year value to
00002 | change throughout the program. In this case the
value 1996 has been entered.

Stop the user from making changes where
unnecessary.

00004

All changes are consolidated at the top of the program.

Rather than changing every reference to the data set all through the
entire length of the program, we can reference the data set name
through a macro variable and generate the correct name each time.

Macro Variable as a Prefix

In the next example an attempt is made to use a macro variable in
front of other text.

B |Program Editor - m4_3

00001 %
00002
00003 data work.junkl;

00004 set &lib.catch:

00005 run;

00006

00007 proc print data=work.junkl;

00008 run; v
< >

ib=saved;

00004 | Resolves to savedcatch

As the log indicates this results in an error.

BiLog - (Untitled)

33 data work.junkl:

3 set &lib.catch;

FRROR: File WORK.SAVEDCATCH.DATA does not exist.
35 run;

< >

As part of the process to identify the end of the macro name the dot
(.) is absorbed. Therefore, when the macro resolves, the dot (.) is
removed and not left behind as part of the remaining character
string.

By adding a second dot (.) the macro resolves properly. The first
dot (.) operates as discussed while the second dot (.) is simply part
of the remaining character string.

B Program Editor - m4_4

Command ===> ~
00001 ¥%let |ib=saved;

00002

00003 data work.junkl;

00004 set &lib..catch;

00005 run;

00006

00007 proc print data=work.junkl;

00008 run; v
< >

00004 | Resolves to saved.catch

As another example:

A SAS library contains data sets named after each state’s two-letter
abbreviation and the fiscal year 1999. Thus, AZ1999, CT1999,
HI1999, NY1999 are examples of the data set names.

You must change the date structure in each of the 50 data sets as
well as manipulate the data set to produce statistics and graphic
output.

How can macros provide quick access making changes
accommodating each of the fifty data sets?

At first, it would seem that the %let statement would work.

Note: This program demonstrates a programming error.

B Program Editor - m4_5

Command ===> »
00001 /% fill in the state value below =/

00002 Zlet st=CT:

00003

00004 /=

00005 No changes required in program below this point
00006 =x

00007

00008 data work.2st1989;

00009 set work.%st1999;

00010 datel=substr(date,1.,5);

00011 date2=substr(date,6.,2);

00012 date=trim(datel)|]| 19°||trim(date2);

00013 drop datel date2:

00014 run;

00015

00016 proc means data-work.&st1999;

00017 run;

00018 .]

The program soon shows a problem. Rather than search for the
macro variable st, SAS searches for the macro variable st7999.

The program must be revised to end the macro name explicitly with
a dot (.).

B Program Editor - m4_6

[Command ===> ~
00001 /% fill in the state value below =/

00002 Zlet st=CT:

00003

00004 /=%

00005 No changes required in program below this point
00006 =x

00007

00008 data work.&st.1999;

00009 set work.&st.19899;

00010 datel=substr(date.1.5);

00011 date2=substr(date,6.2);

00012 date=trim(datel)|]|*19°||trim(date2);

00013 drop datel date2;

00014 run;

00015

00016 proc means data=work.2st.1999;

00017 run;

00018 o

00008, | The macro variable call of &st. will resolve to the
00009, | value desired.
00016

Remember that SAS uses the dot for other syntax reasons such as:

Usage of Dot Example

Multiple-level Source.data

names Source.project.data.entry
First-dot / Last-dot If first.gender = 0 then ...;
Formats / Informats | Dollar12.2

Missing numerics Where salary ne ;

Naming output Put ‘’;

Append Two Macro Variables Together

Often two or more macro variables are incorporated into a single
character string. Again, the issue is how is the macro variable
name identified and processed.

In the following example the macro variables dsn and n are used
together to identify the data set to be printed. Which data set is
printed?

B Program Editor - m4_7

B Program Editor - m4_9

Command ===> A
00001 Xlet dsn=contour:

00002

00003 Xlet n=2;

00004

00005 Xlet dsn2=oilwell2;

00006

00007 title *Data Set saved.&dsn&n™:
00008 proc print data=saved.&dsn&n;
00009 run;

00010 title;

1:nn||

The ampersand (&) indicates the beginning of a macro variable
name. Therefore, &dsn is considered one macro variable name
while &n refers to a second macro variable. The entire character
string resolves to saved.contour2.

00001,

00003, Create macro variables dsn, n, and dsn2.
00005

00007,

00008 Resolves to saved.contour2

| Output - (Untitled)

Data Set saved.contourz

Obs DOSE REGULARY PULSE SHAPE
1 40 4 115 BALLO
2 H0 5 130 BALLO
3 40 [130 BALLO
! 40 T 134 BALLO
5 40 -] 140 BALLO &
< 3

In the following example a dot (.) indicates the end of the first macro
variable name (&dsn). The dot (.) acts as a delimiter and is
removed as part of the process to identify the macro variable name.
Because a second macro variable name follows, the dot (.) is not
needed. This character string resolves to saved.contour2 just as in
the previous example.

B Program Editor - m4_B

[Command ===> A
00001 Xlet dsn=contour;

00002

00003 Xlet n=2;

00004

00005 Zlet dsn2=oilwell2;

00006

00007 title *Data Set saved.&dsn.&n™;
00008 proc print data=saved.&dsn.&n:
00009 run;

00010 title:

< >

00001,
00003,
00005
00007,
00008

Create macro variables dsn, n, and dsn2.

Resolves to saved.contour2

B Qutput - (Untitled)
Command === -~
Data Set saved.contour2

Obs DOSE REGULARY PULSE SHAPE
1 H0 4 115 BALLO
2 40 5 130 BALLO
3 40] 130 BALLO
4 40 T 134 BALLO
5 40 8 140 BALLO a
< >

Finally, consider the following code. Which data set is printed?

Command ===> ~
00001 Xlet dsn=contour:
00002
00003 Xlet n=2;
00004
00005 Xlet dsn2=oilwell2;
00006
00007 title "Data Set saved.&dsn2™;
00008 proc print data=saved.&dsn2;
00009 run;
00010 title; =
< >
Line Comment
00001
00003, Create macro variables dsn, n, and dsn2.
00005
00007 .
Resolves to saved.oilwell2
00008

Data Set saved.oilwell2

Obs CONC DISTANCE ID
1000
1250
800
960
650

LW —
coocoo
W ——

Macro Code Buncles

The regular job you submit to backup your data sets or produce
your graphics can all be bundled up into a macro and then 'invoked'
using one word — the name of the macro.

3 Program Editor - (Untitled) [-]

Command ===> | =

00001 /IEt startup

00002 %str(libname archive “c:\sas™;

00003

00004 proc copy in=archive out=work;

00005 select demograf demogius / memtype=data;

00006 run;

00007

00008 Iibname archive clear;);

00009

00010 &startup;

00011 -

< | o/
Line Comment

00001-00008 | The %let statement used with the %str
function to write a short program.
00010 The macro startup is invoked with
&startup; (i.e., ampersand, name, semi-

colon).

The log shows the results.

Bl Log - (Untitled) J = S
106 #let startup = =l
107 %str(libname archive "c:\sas”;
108
109 proc copy inzarchive outzuwork;
110 select demograf demogius / memtype=data;
111 run;
1z
113 libname archive clear;);
114
115 sstartup;
NOTE: Libname ARCHIVE refers to the same physical library as SAVED.
NOTE: Libref ARCHIVE was successfully assigned as follows:
Engine: UB

Physical Name: C:\sas
NOTE: Copying ARCHIVE.DEMOGRAF to WORK.DEMOGRAF (memtype=DATA).
NOTE: There uere 40 observations read from the dataset ARCHIUVE.DEMOGRAF .
NOTE: The data set WORK.DEMOGRAF has 40 observations and 6 variables.
NOTE: Copying ARCHIVE.DEMOGIUS to WORK.DEMOGIUS (memtype=DATA).
NOTE: There uere 104 observations read Trom the dataset ARCHIUE.DEMOGIUS.
NOTE: The data set WORK.DEMOGIUS has 104 observations and 16 variables.
NOTE: PROCEDURE COPY used:

real tinme 1.30 seconds

NOTE: Libref ARCHIVE has been deassigned.

< | [

Reusing fixed programs is one advantage of a macro. Rather than
retype a lengthy set of programming instructions, it is easier to
create a macro program and call it with a single word.

The limiting feature of the previous example is its inability to adapt
to changing needs. Suppose the programmer needs a different data
set copied.

As currently written it would be necessary to add the name of the
new data set to the Proc Copy select statement. Greater flexibility
can be achieved by incorporating a macro variable into the select
statement.

more = computer; 1 7

00002 Zlet startup =

00003 Zstr(|ibname archive “c:\sas™;

00004 |
00005 proc copy inzarchive outsuork;

00005 select demograf demogius Zmore / memtypesdata;

00007 run;

00008

00009 libname archive clear;);

00010

00011 &startup;

00012 hd
41

Line Comment
00006 | The &more macro variable makes it possible to
specify additional data sets.

Notice that in the above example a single additional data set has
been copied.

To copy several additional data sets simply list the data sets as the
value of the macro variable.

B3 Program E

Command

00001 %let more = computer carhire bpl;
00002 %let startup =

00003 Zstr(|ibname archive “c:\sas™;

proc copy in=archive outzuork;

select demograf demogius &more / memtype=data;
run;
libname archive clear;);

0
&startup;
2

00006 The %let statement defines multiple data
sets to copy along with the ones already
identified.

%Macro - %Mend

SAS can define a series of programming statements in an alternate
manner.

Rather than use the %let = %str() or %let = %nrstr() syntax, begin
the code with %macro statement and end it with %mend statement.

The rewritten program is shown below.

I Program Editor - (Untitled) I [=]
Command ===> =
00001 %macro startupl; |
00002 libname archive “c:\sas’;

00003

00004 pruc copy in=archive out=work P
00005 eieet demngraf demagius < memtypesdata;

00005 run;

00007

00008 libhame archive clear;

00008 %mend startupl;

0001

00011 %startupl

00012 -
4] | LI

Line ‘ Comment

00001-00009 | A macro bundle is created using %macro
and %mend syntax.

00011 The macro bundle startup1 is invoked with
%startup1 (i.e., percent and name only —

no semi-colon).

Notice that the macro call, %startup1, does not include a
semi-colon.

There is no need here as a semi-colon has been generated by the
macro call.

The code within the definition is complete, so no extra semi-colon is
required.

%Macro - %Mend Notes

e A macro bundle — defined by %macro - %mend
statements — must be defined before the named bundle
can be called.

. Macro definitions start with the %macro statement that
defines the name of the macro.

. The definition continues until the %mend statement.

. Including the macro name in the %mend statement is
optional but advised.

e The macro is called or invoked by typing the macro name
(no semi-colon).

A macro may contain:
. Data and Proc step code

. Macro programming statements and functions
As a second example, consider the following code.

B3 Program (_[ofx]
Command [
00001 data work.batch;

00002 set saved.demogius;

00003 if age > 35 then newsal = salary % 1.Z2;

00004 else newsal = salary *% 1.5;

00005 keep age staffno salary r\awsal,

00006 run;

000

00008 proc print datazwork.batch;

00009 title “Pay Review on gsysdate9”;

00010 run;

00011 B
4 | H A

How can we bundle this code so all we have to type to execute the
code is a single word?

Use the %macro - %mend syntax.

3 Program
Command
00001 %macro money;

00002 data work.batch;

00003 set saved.demogius;

00004 if age > 35 than newsal = salar’y * 1.2;

00005 else neusal = salary *

00006 keep age staffno salary newsal;

00007 run;

00008

00009 proc prmt datazuork.batch;

00010 title “Pay Review on &sysdates”;

00011 run;

00012 %mend money;

00013

00014 %maney

00015 =

4 | H 4

(=] B

The macro name may be omitted in the %mend statement because
the SAS System will default to ending the last macro.

However, the %mend statement is critical. The macro processor
takes control when a %macro statement is seen. Should the
%mend be missing, everything from the %macro statement is
regarded as being part of the open macro definition.

There are occasions when all the submitted code appears to be
written to the log and nothing else - the code appears to be
disappearing into a black hole! On such occasions, check for the
absence of a %mend statement.

Macro Bundle Parameters

In the %smoney example, the data set names were fixed. How can
we write a macro invoking any name for the library and data sets
involved?

The way to do this is to pass parameters to the macro bundle. To
use this method, the macro must be defined as requiring
parameters.

Macro bundle parameters are created by listing variables in a set of
parentheses next to the name of the macro bundle. The
parameters are nothing more than macro variables available for use
within the macro bundle. Within the bundle the macro variables are
referenced just as we have seen before, with an ampersand
followed by the macro variable name. When the macro is called the

values for the parameters are specified in a set of parentheses next
to the name of the macro.

There are two types of macro bundle parameters, positional and
keyword.

Positional Parameters

The following example shows the creation of a single positional
parameter.

Command =>

00001 ¥macro money (1ib);

00002 data work.batch;

00003 set &lib. demuglus;

00004 if age > 35 ‘hEI’\ I’\EWSE| = salar’y * 1.2;

00005 else newsal = salary % 1.

00006 Keep age staffnu salary ncusal;

00007 run; po=

00008

00009 proc PI"II’!‘ data=work.batch;

00010 ti “Pay Review on Ssysdated”;
00011 run;

00012 xmend money;

333:3 “money (saved)

00015 -
4] | H
00001 The positional parameter lib is established.
00014 The value ‘saved’ replaces each macro

call for &lib.

The above example is logically equivalent to:

%let lib = saved;
Multiple parameters may be created. Multiple positional parameters
are simply listed with a comma between parameters. For positional
parameters variable names and associated values are determined
by the position or order of the parameters.

In the following example two positional parameters are created.

B3 Program Editor - (Untitled) [[=1 BT
Command ===> A
00001 Xmacro money (lib, wvar);
00002 data work.batch;
00003 set &lib. nemuglus
00004 if age > 35 them &uvar = salary # 1.2;
00005 else &var = salary * 1.5; i
00006 keep age staffno salary &var;
00007 run;
00008
00009 proc print datazwork.batch;
00010 title “Pay Review on gsysdatesd”;
00011 run;
00012 %mend money;
00013
00014 %money (saved, outgo)
00015 -
| | H)
Line Comment

00001 Two positional parameters are

established, /ib and var respectively.
00014 The value ‘saved’ is substituted for the first

positional parameter — lib — and the value
‘outgo’ is substituted for the second
positional parameter — var.

Your macro call must have a number of values matching the
number of positional parameters.

Keyword Parameters
Keyword parameters are defined using the parameter name with an
equal sign. This technique is preferred in certain situations

because:

. It does not require defining and passing parameters in the
same order.

. It allows default values to be used.

Two keyword parameters are created in the following example.

[Program
Comnand
00001 %mal

itled) I [=1 3

0 money (lib=, var=); 17

00002 data work.batch;

00003 set &lib. r.hallu:lglusY

00004 it age > 35 then &var = salary # 1.2;

00005 else xvar = salary % 1.5;

00006 keep age staffho salary &var; L
00007 run;

00008

00009 proc print datazuork.batch;
00010 title "Pay Review on fsysdated”;

un;
00012 Zmand money;

00014 %money (|ib=saved, var=outgo)
00015 Xmoney (var=outgo, |ib=saved)

00016 -
4| | 2 7
00001 Two keyword parameters are created — lib

and var.
00014 The values are assigned for the keyword
00015 parameters. The order of assigning values
is not important with keyword parameters.

In the next example default values are assigned to the macro
parameters.

ﬂng.am =B
Comman A
00001 /mal:ru money (|ib=saved, var=neuwsal);
00002 data work.batch;
00003 set &lib. nemuglus
00004 if age > 35 them &uvar = salary # 1.2;
00005 else %var = salary * 1.5; —
00006 keep age staffno salary &Uar,
00007 run;
00008
00009 proc print datazwork.batch;
00010 title “Pay Review on gsysdated”;
00011 run;
00012 %mend money;
00013
00014 %Xmoney ()
00015 '
4 | P
[| | Comment
00001 Two keyword parameters are created, with
default values assigned.
00014 The macro invocation uses the default
parameters.

Parentheses must be used when invoking a macro with keyword
parameters. If no values are being passed an empty set of
parentheses is used.

Null Values

With positional parameters null values are assigned by using a
comma as a 'placeholder’:

Command
Zmacro printme (ds , opts, feature);
proc print data=saved.fds 2opts;

&feature
run;
zmend printme;

00007 “printme (demogius, d noobs uniform, where gender = “F”;)
00008 Xprintme (demogius, , format salary dollarig.2;)
00009 Xprintme (demogius, .)

| [

00001 Three positional parameters are defined.
00007 Each positional parameter is given a value.
00008 The second parameter — opts — lacks a

value. A null value is given. No print
options are defined.

00009 The second and third parameters — opts
and feature — lack values. Null values are
given.

A null value is assigned for keyword parameters by simply omitting

the parameter.

M[=1E3
I 2]
00001 %macro printme (ds= , opts= , feature=);
00002 proc print data=saved.&ds %opts
00003 &feature
00004 run; pe
00005 Xmend printme;
00006
00007 %printme (ds= = demogius, opts = d nuuns uniform,
00008 feature = where gender =
00009 /prlnhua (feature = format salary dullar|E 2;, ds = demogius)
00010 ¥printme (ds = demogius)
00011 =
<T | H
Line Comment
00001 Three keyword parameters are defined

without default values.
00007-00008 | All three keyword parameters are given
values. The order of the parameters is not

important.
00009 The second parameter — opts — has not
been listed. It receives a null value.
00010 The second and third parameters — ofps
and feature — are not listed and receive
null values.

Combination of Positional and Keyword Parameters

If positional and keyword parameters are used together, the
positional parameters must be listed first.

litor - (Untitled)
>

00001 %macro printme (ds , opts= , feature=);
00002 proc print data=saved.ids %opts;
00003 afeature
00004 run;
00005 %mend printme;
00005
00007 Zprintme (demogius, opts = d nogbs wniform,
00008 feature = where gender =

00008 %printme (demogius, feature = where age gt 40;)
00010 %printme (demogius)

| =

00001 Three parameters are defined, only one of
which is positional and two are keyword.
00007-00008, | The macro bundle call references the
00009, positional parameter(s) first. Any keyword
00010 parameters can be referenced only after
the positional parameters are given.

Macro Debugging Options

A major challenge of the programmer is to verify that syntax written by
a macro and values passed are correct. As for assuring the latter, the

programmer can insert a series of %put statements in the syntax
while it is being written. If the predicted values match the displayed

values, the program is in good shape. The SAS session can also use
three system options to see more information about the processing of

macro code and values.

While developing macros, consider using any of three options.

(] Program Editor - m6_14

00001 options symbolgen mprint mlogic;
00002 L
<

Consider the following program with various macro options invoked
one at a time.

I [=1 3

o000z proc
%if Beysday = Monday %then %let dait = Print;
% = Tuesday #then %let doit = Means;

= uednesday then xIet doit = Contents;
2 = Thursday xthen xlet doit = Univariate;
00007 Zelse Xif %sysday =
onuns sdoit data=gds;

Friday Zthen %zlet doit = Summary;

run;
0001 ﬂ “%mend tasks;

onulz %tasks (saved.demogius)
13

185 it &sysday = Monday Xthen xlet doit = Print;]
186 7else %if &sysday = Tuesday %then %let doit = Means;

187 #else %if &sysday = Wednesday zthen Ziet doi Cantents;

188 7else %if &sysday = Thursday %then %let Q011 = Unjoariate;

189 7else %if &sysday = Friday %then %let doit = Summary;

190 &doit data=gds
192 Znend tasks;

194 7tasks (saved.demogius)

Mal:rn variable SYSDAY resolves to Tuesday
ro variable SYSDAY resolves to Tuesday

SWIBDLGEN: Mal:rn variable DOIT resolves to Me:

SYNBOLGEN: Hacra variable DS resoives fo saved. uemugius

There were 104 observations read from the dataset SAUED.DEMOGIUS.
NEITE PROCEDURE MEANS used:
real time 0.10 seconds

4q | oy

Mprint writes the code actually created by the macro syntax to the Log
window.

titled) 9 [=] £
170 /mal:rn tasks (ds); =]
171 pri
172 /lf &sysday = Monday Xthen %let doit = Print;
173 %else %if &sysday = Tuesday %then Xlet doit = Means;
174 Zelse %if &sysday = Wednesday Xthen %let doit = Contents;
175 Zelse %if &sysday = Thursday %then Z%let doit = Univariate;
176 zelse %if &s = Friday %then Z%let doit = Summary;
177 gdoit data B(ds
178 n;
179 7menn tasks;
180
181 #tasks (saved.demogius)
MPRINT(TASKS) : proc Means data=saved.demogius;
MPRINT(TASKS) : run;
NOTE: There were 104 observations read from the dataset SAVED.DEMOGIUS.
NOTE: PROCEDURE MEANS used:

real time 2.46 seconds
4 | H A
Miogic allows the programmer to trace the flow of the macro
execution.
B Log - (Untitled) I [=] 3
196 acro tasks (ds); = |
197 proc
198 ZiT &sysday = H\mday #%then %let doit = Print;
199 %else %if &sysday = Tuesday “then Xlet doit = Means;
200 zelse %if &sysday = Wednesday Z%then %let doit = cnmems;
201 “else %if &sysday = Thursday “then Zlet doit = Univariate;
2oz “else #iT &sysday = Friday %then #let doit = Summary;
203 &doit data=&ds
204
205 7menn tasks;
EOE

#tasks (saved.demogius)
MLDGIC(THSKS) Beginning execution.
MLDGIC(TASKS): Parameter DS has value saved.demogius
MLDGIC(THSKS) %IF condition &sysday = Monday is FALSE
MLOGIC(TASKS) %IF condition &sysday = Tuesday is TRUE
MLDGIC(THSKS) YLET (variable name is DOIT)
NOTE: There were 104 observations read from the dataset SAVED.DEMOGIUS.
NOTE: PROCEDURE MEANS used:

ime 0.11 seconds

MLOGIC(TASKS) : Ending execution.
<] | v /]

When not developing macros, efficiency considerations suggest
turning off the macro debugging options.

| Mz

Optional - Variable Numbers of Parameters

Sometimes you may want to write a macro to contain a variable
numbers of parameters.

For example, the %age macro as defined below can only process
five data sets.

What if we wanted to write a utility macro so we could process any
number of data sets?

A way to accomplish this is to use the Parmbuff option.

B3 Program Editor - (Untitled) 3
iCommand ===> &
00001 %macro age(new, old, old_0, old_1, eld_2.library=saved);

00002 proc datasets data=&library;

00003 age Snew %old_0 2old_1 Zold_2;

00004 run;

00005 ¥mend age;

00006 >

option.

00001 Xmacro age / parmbuff;
roc datasets data=&library;
age %new %o0ld_0 Zold_1 &old_2Z;

run;
“mend age;

Here, all supplied parameters, including any special characters
used, are assigned to the automatic local macro variable &Syspbuff
which is then manipulated in the macro by macro programming
statements.

The call displayed in the code displayed below gives a value to
&syspbuff of library=mylib,new,old_0,0ld_1,old_2.

(%] Program Editor - mé_22

Command ===
00001 %age(new,old_0.,o0ld_1.0ld_2, library=mylib):

00002 >
< >

Parameters may also be included in the definition

I3 Program E

n - (Untitled) [-[O[x]

Command ===> =
00001 %macro age(posparm) / parmbuff;

00002

00003 macro programming statements

000

00005 %mend age;

99008 2
k] | 1V

In the above example, a different number of parameters can be
supplied as long as there is at least one.

(%] Program Editor - mé_24

Command ===
00001 Xage(new,old_0.,0ld_1.o0ld_2,mylib]);

00002 >
< >

The call gives a value to &syspbuff of mylib,new,old_0,0ld_1,old_2
and &posparm the value mylib.

3 Program E (Untitled) =[o]
Command ===

00001 %macro t / parmbuff;

00002 data _null_;

00003 J = asyspbuff’;

00004 v = scanlj, 1, "()7);

00005 call symput(’g’, v);

00006 run; =
00007

00008 proc print data=saved.demogius;

00009 var %g;

00010 run;

00011 %mend t;

00012

00013 %t (age =salary weight cars)

00014 ~
<l | 0

Here the value (age salary weight cars) has been passed to
&syspbulff.

The _null_ data step is required to remove the parentheses from
around the variable names.

&Syspbuffis found in a symbol table local to the executing macro.

